Search results

1 – 10 of 26
Article
Publication date: 1 November 2002

S.Z. Shuja, B.S. Yilbas and M.O. Budair

A confined laminar swirling jet is an interesting research topic due to flow and temperature fields generated in and across the jet. In the present study, a confined laminar…

Abstract

A confined laminar swirling jet is an interesting research topic due to flow and temperature fields generated in and across the jet. In the present study, a confined laminar swirling jet is studied, and flow and temperature fields are simulated numerically using a control volume approach. In order to investigate the influence of the jet exiting (exiting the nozzle and inleting to the control volume) velocity profiles on the flow and heat transfer characteristics, eight different velocity profiles are considered. To identify each velocity profile, a velocity profile number is introduced. Entropy analysis is carried out to determine the total entropy generation due to heat transfer and fluid friction. Merit number is computed for various swirling velocities and velocity profiles. It is found that swirling motion expands the jet in the radial direction and reduces the jet length in the axial direction. This, in turn, reduces the entropy generation rate and improves the Merit number. Increasing velocity profile number enhances the entropy production rate, but improves the Merit number.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 September 2007

S.Z. Shuja, B.S. Yilbas and M.O. Budair

The purpose of this paper is to examine entropy generation rate in the flow field due jet emanating from an annular nozzle and impinging on to a flat plate. Since the flow field…

Abstract

Purpose

The purpose of this paper is to examine entropy generation rate in the flow field due jet emanating from an annular nozzle and impinging on to a flat plate. Since the flow field changes with the geometric configuration of the annular nozzle, the influence of nozzle outer cone angle on the entropy generation rate is considered.

Design/methodology/approach

The steady flow field pertinent to jet impingement on to a flat plate is modeled with appropriate boundary conditions. A control volume approach is introduced to discretize the governing equations of flow and to simulate the physical situation numerically. Entropy generation rate due to heat transfer and fluid friction is formulated. The resulting entropy equations are solved numerically.

Findings

Thermodynamic irreversibility, which is quantified through entropy generation rate, gives insight into the thermodynamics losses in the flow system. Entropy generation rate is highly affected by the nozzle outer cone angle. In this case, increasing nozzle outer cone angle enhances the entropy generation rate, particularly due to fluid friction.

Research limitations/implications

The predictions may be extended to include the nozzle area ratio and mass flow rate variation.

Practical implications

The paper is a very useful source of physical information for improving nozzle design, particularly that which is used in a laser thick material cutting operation. It disseminates information for those working on both laser machining applications and entropy generation in flow systems.

Originality/value

This paper discusses the physical issues related to the entropy generation rate and offers practical help to an individual starting out on an academic career.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2005

S.Z. Shuja, B.S. Yilbas and M.O. Budair

To investigate the influence of conical and annular nozzle geometric configurations on the flow structure and heat transfer characteristics near the stagnation point of a flat…

Abstract

Purpose

To investigate the influence of conical and annular nozzle geometric configurations on the flow structure and heat transfer characteristics near the stagnation point of a flat plate with limited heated area.

Design/methodology/approach

The conical and annular conical nozzles were designed such that the exit area of both nozzles is the same and the mass flow rate passing through the nozzles is kept constant for both nozzles. The governing equations of flow and heat transfer are modeled numerically using a control volume approach. The grid independent solutions are secured and the predictions of flow and heat transfer characteristics are compared with the simple pipe flow with the same area and mass flow rate. The Reynolds stress turbulence model is employed to account for the turbulence. A flat plate with a limited heated area is accommodated to resemble the laser heating situations and air is used as assisting gas.

Findings

It is found that nozzle exiting velocity profiles differ considerably with changing the nozzle cone angle. Increasing nozzle cone angle enhances the radial flow and extends the stagnation zone away from the plate surface. The impinging jet with a fully developed velocity profile results in enhanced radial acceleration of the flow. Moreover, the flow structure changes considerably for annular conical and conical nozzles. The nozzle exiting velocity profile results in improved heat transfer coefficient at the flat plate surface. However, the achievement of fully developed pipe flow like velocity profile emanating from a nozzle is almost impossible for practical laser applications. Therefore, use of annular conical nozzles facilitates the high cooling rates from the surface during laser heating process

Research limitations/implications

The results are limited with theoretical predictions due to the difficulties arising in experimental studies.

Practical implications

The results can be used in laser machining applications to improve the end product quality. It also enables selection of the appropriate nozzle geometry for a particular machining application.

Originality/value

This paper provides information on the flow and heat transfer characteristics associated with the nozzle geometric configurations and offers practical help for the researchers and scientists working in the laser machining area.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2002

S.Z. Shuja, B.S. Yilbas and M.O. Budair

The gas assisted Iaser heating of engineering surfaces finds wide application in industry. Numerical simulation of the heating process may considerably reduce the cost spent on…

Abstract

The gas assisted Iaser heating of engineering surfaces finds wide application in industry. Numerical simulation of the heating process may considerably reduce the cost spent on experimentation. In the present study, 2‐dimensional axisymmetric flow and energy equations are solved numerically using a control volume approach for the case of a gas assisted laser heating of steel surfaces. Various turbulence models including standard kε, kε YAP, low Reynolds number kε and RSTM models are tested. The low Reynolds number kε model is selected to account for the turbulence. Variable properties of both solid and gas are taken into account during the simulation. Air is considered as an assisting gas impinging the workpiece surface coaxially with the laser beam. In order to validate the presently considered methodology, the study is extended to include comparison of present predictions with analytical solution for the case available in the literature. It is found that the assisting gas jet has some influence on the temperature profiles. This effect is minimum at the irradiated spot center and it amplifies considerably in the gas side. In addition, account for the variable properties results in lower surface temperatures as compared to the constant properties case.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2004

B.S. Yilbas, S.Z. Shuja and M.O. Budair

Gas jet assisting process finds wide application in industry due to its ability to alter the heat transfer characteristics of the region subjected to jet assisted processing. In…

Abstract

Gas jet assisting process finds wide application in industry due to its ability to alter the heat transfer characteristics of the region subjected to jet assisted processing. In the present study, jet impingement onto a cavity with elevated wall temperature is considered. The flow and heat transfer equations are solved numerically using a control volume approach. Reynolds Stress Turbulence Model is employed to account for the turbulence. The simulations are repeated for four cavity depths and two gas jet velocities. It is found that the stagnation zone moves slightly further into the cavity with increasing cavity depth. The flow generated behind the stagnation zone in the cavity influences the heat transfer characteristics in this region, particularly for the cavities with relatively large depth.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2002

B.S. Yilbas, S.Z. Shuja and M.O. Budair

Jet impingement onto surface finds wide application in industry. In laser processing an assisting gas jet is introduced either to shield the surface from oxidation reactions or…

Abstract

Jet impingement onto surface finds wide application in industry. In laser processing an assisting gas jet is introduced either to shield the surface from oxidation reactions or initiating exothermic reaction to increase energy in the region irradiated by a laser beam. When an impinging gas jet is used for a shielding purpose, the gas jet enhances the convective cooling of the cavity surface. The convective cooling of the laser formed cavity surface can be simulated through jet impingement onto a cavity with elevated wall temperatures. In the present study, gas impingement onto a slot is considered. The wall temperature of the cavity is kept at elevated temperature similar to the melting temperature of the substrate material. A control volume approach is used to simulate the flow and temperature fields. The Reynolds Stress Turbulence model (RSTM) is employed to account for the turbulence. To examine the effect of cavity depth on the heat transfer characteristics, the depth is varied while keeping the cavity width constant. It is found that impinging jet penetrates into a cavity, which in turn, results in a stagnation region extending into the cavity. An impinging gas jet has considerable effect on the Nusselt number along the side walls of the cavity while the Nusselt number monotonically changes with varying cavity depth.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2002

S.Z. Shuja, B.S. Yilbas and M.O. Budair

The vortex shedding from a rectangular cylinder improves the heat transfer rates. Introducing a ground effect in such a flow system alters the shedding frequency, which in turn…

Abstract

The vortex shedding from a rectangular cylinder improves the heat transfer rates. Introducing a ground effect in such a flow system alters the shedding frequency, which in turn enables to vary the cooling rates of the cylinder. In the present study a laminar flow passing over a rectangular cylinder with a ground effect is considered. The flow and energy equations are solved numerically using a control volume approach. Strouhal and Stanton number variations due to gap height are computed and the influence of Strouhal number on Stanton number variation behind the cylinder is examined. The study is extended to include the predictions of entropy generation in the solution domain. It is found that shedding frequency increases as gap height reduces and further reduction in gap height results in diminishing of vortex shedding, in which case confined flow is developed in the gap. Heat transfer rates improve when Strouhal number is maximum. In the case of confined flow situation, heat transfer rates enhance substantially in the region close to the top corner of the cylinder, in which case, non‐uniform cooling of the surface is resulted.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1993

A. Raouf, Zulfiqar Ali and S.O. Duffuaa

Maintenance management consists of an aggregate effort to performmaintenance by effectively utilizing manpower and material through theapplication of standard procedures. It is a…

Abstract

Maintenance management consists of an aggregate effort to perform maintenance by effectively utilizing manpower and material through the application of standard procedures. It is a complex and multifaceted task. An ever‐growing number of computerized maintenance management information systems are available on the market to facilitate this task. In order to install a computerized maintenance management system, a company has two options: either to buy or to develop such a system. Briefly describes the major functions of maintenance management and suggests an instrument to evaluate comparatively the available computerized maintenance management systems.

Details

International Journal of Operations & Production Management, vol. 13 no. 3
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 1 December 2000

S.Z. Shuja, B.S. Yilbas and M.O. Iqbal

Flow in the cavity with heat generating body finds wide domestic and industrial applications. The heat transfer characteristics and the irreversibility generated in the cavity…

Abstract

Flow in the cavity with heat generating body finds wide domestic and industrial applications. The heat transfer characteristics and the irreversibility generated in the cavity depend on mainly the cavity size, aspect ratio of the heat generating body, and inlet/exit port locations. In the present study, effect of exit port locations on the heat transfer characteristics and irreversibility generation in a square cavity with heat generating body is investigated. A numerical simulation is carried out to predict the velocity and temperature fields in the cavity. To examine the effect of solid body aspect ratio on the heat transfer characteristics two extreme aspect ratios (0.25 and 4.0) are considered in the analysis. Fifteen different locations of exit port are introduced while air is used as an environment in the cavity. It is found that non‐uniform cooling of the solid body occurs for exit port location numbers of 13 and beyond. In this case, heat transfer reduces while irreversibility increases in the cavity. These findings are valid for both aspect ratios of the solid body.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 March 2009

B.S. Yilbas and S.Z. Shuja

The paper's aim is to provide information on heat transfer and flow characteristics for a jet emerging from a conical nozzle and impinging onto the cylindrical, which resembles…

Abstract

Purpose

The paper's aim is to provide information on heat transfer and flow characteristics for a jet emerging from a conical nozzle and impinging onto the cylindrical, which resembles the laser heating process, for researchers and graduate students working in the laser processing area, which can help them to improve the understanding of the laser machining process.

Design/methodology/approach

A numerical scheme employing the control volume approach is introduced to model the flow and heating situations. The effect of jet velocity on the heat transfer rates and skin friction around the cylindrical cavity subjected to the jet impingement was investigated.

Findings

Increasing jet velocity at nozzle exit enhances the heat transfer rates from the cavity wall and modifies the skin friction at cavity wall, which is more pronounced as the cavity depth increases to 1 mm.

Research limitations/implications

The effects of nozzle cone angle on the flow structure and heat transfer characteristics were not examined, which perhaps limits the general usefulness of the findings.

Practical implications

Very useful information are provided for the laser gas assisted processing, which has a practical importance in machining industry.

Originality/value

This paper provides original information for the effects of the gas jet velocity on the cooling rates of the laser produced cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 26